
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

In vivo human-like robotic phenotyping of leaf traits in maize and sorghum
in greenhouse

Abbas Atefia, Yufeng Gea,⁎, Santosh Pitlaa, James Schnableb

a Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
bDepartment of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

A R T I C L E I N F O

Keywords:
Plant phenotyping
Leaf reflectance
Leaf temperature
Machine vision
Image processing
Agricultural robotics

A B S T R A C T

In plant phenotyping, leaf-level physiological and chemical trait measurements are needed to investigate and
monitor the condition of plants. The manual measurement of these properties is time consuming, error prone,
and laborious. The use of robots is a new approach to accomplish such endeavors, enabling automated mon-
itoring with minimal human intervention. In this paper, a plant phenotyping robotic system was developed to
realize automated measurement of plant leaf properties. The robotic system comprised of a four Degree of
Freedom (DOF) robotic manipulator and a Time-of-Flight (TOF) camera. A robotic gripper was developed to
integrate an optical fiber cable (coupled to a portable spectrometer) for leaf spectral reflectance measurement,
and a thermistor for leaf temperature measurement. A MATLAB program along with a Graphical User Interface
(GUI) was developed to control the robotic system and its components, and for acquiring and recording data
obtained from the sensors. The system was tested in a greenhouse using maize and sorghum plants. The results
showed that leaf temperature measurements by the phenotyping robot were significantly correlated with those
measured manually by a human researcher (R2=0.58 for maize and 0.63 for sorghum). The leaf spectral
measurements by the phenotyping robot predicted leaf chlorophyll, water content and potassium with moderate
success (R2 ranged from 0.52 to 0.61), whereas the prediction for leaf nitrogen and phosphorus were poor. The
total execution time to grasp and take measurements from one leaf was 35.5 ± 4.4 s for maize and 38.5 ± 5.7 s
for sorghum. Furthermore, the test showed that the grasping success rate was 78% for maize and 48% for
sorghum. The phenotyping robot can be useful to complement the traditional image-based high-throughput
plant phenotyping in greenhouses by collecting in vivo leaf-level physiological and biochemical trait measure-
ments.

1. Introduction

With the increasing world population, agricultural production must
increase to meet the demands of food, feed and fuel in the future
(Rahaman et al., 2015). Climate change and lack of sufficient land to
grow crops are the two major challenges that need to be addressed to
produce more food (Fischer, 2009). To ensure global food security, it is
necessary to monitor the interactions between plant genotype, pheno-
type, and environment to breed high-yielding and stress-tolerant plants
(Shah et al., 2016). Plant phenotyping studies the interaction between
the complex plant traits and the environment (Foix et al., 2015). It is
important to perform quantitative assessment of the plant phenotypes
during growing seasons (Xiao et al., 2016), which entails regular
sampling and measurement of hundreds or even thousands of plants
(Van Henten et al., 2006; Fourcaud et al., 2008). Traditional plant

phenotyping, where data collection is largely manually, is therefore
laborious and prone to error (Vijayarangan et al., 2018).

Automated monitor and measurement with agricultural robotics
represents a new approach to collect plant phenotypic data (Alenyà
Ribas et al., 2012). In the fields, modular phenotyping systems with
various degree of automation (from manually operated carts to fully
automated field robots) are developed to collect a number of diverse
crop traits during growing seasons (Klose et al., 2010; Andrade-Sanchez
et al., 2014; Bai et al., 2016; Shafiekhani et al., 2017; Mueller-Sim et al.,
2017). More recently, gantry and cable-suspended integrated sensing
and robotic systems for large-scale plant phenotype data collection
were developed (Virlet et al., 2017; Kirchgessner et al., 2017; Bai et al.,
2019).

Robotic systems are also developed in controlled environments
(e.g., greenhouse) to realize automated phenotyping at the single plant
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level. These systems often characterize a vision system and a robotic
manipulator/gripper for automated plant and leaf detection, localiza-
tion, and measurement. Lu et al. (2017) mounted a TOF (Time-of-
Flight) camera on the end effector of a robotic manipulator to measure
the stem height and leaf length of maize seedlings, with reported errors
of 13.7% and 13.1%, respectively. Chaudhury et al. (2017) attached a
laser scanner to a robotic manipulator to reconstruct the 3D model of
the plant and to compute its surface area and volume. A collision free
robotic system was developed to probe plant leaves for indoor pheno-
typing (Bao et al., 2017). This system could probe all leaves of artificial
plants and the average time for motion planning was 0.4 s. Ahlin et al.
(2016) used an eye-in-hand camera with a six DOF (Degree of Freedom)
robotic manipulator to grasp the leaves of artificial plants. The system
used deep learning and visual-servoing to identify and grasp the leaves
successfully.

Alenyà Ribas et al. (2012) attached a PMD CamBoard TOF camera
to a robotic manipulator for probing the leaves of Epipremnum Aureum
and Anthurium Andreanum plants. They also integrated a SPAD chlor-
ophyll meter to the end effector of the robotic manipulator to measure
the chlorophyll content of the leaves. The authors reported a success
rate of 82% for leaf probing. Inaccurate estimation of the probing point
due to poor model fitting or segmentation errors of the leaves was the
main reason for this inferior performance of the robotic system.

In this paper, a robotic system was reported for in vivo, human-like
phenotyping of leaf traits in maize and sorghum plants in the green-
house. Two sensing modules were integrated into the robotic gripper:
(1) an optical fiber cable to measure leaf VisNIR (visible and near in-
frared) reflectance spectra; and (2) a thermistor to measure leaf tem-
perature. Leaf VisNIR spectra could further be used to infer an array of
leaf chemical properties such as chlorophyll, water content and ni-
trogen content (Yendrek et al., 2017). To the best of our knowledge,
such a robotic system was not previously reported. Finally, an experi-
ment was conducted to evaluate the performance of this robotic system.

2. Materials and methods

2.1. Hardware of the robotic system

Vision system: A TOF camera (Model: SR4500, Mesa Imaging Inc.,
Zürich, Switzerland) was used as the vision system for the robot. This
camera has a pixel array of 176×144 and a field of view of 69°× 55°.
The accuracy of this camera is ± 2 cm in the measurement range of
0.5–5m. The camera provides XYZ coordinates (e.g., three channels) of
each pixel of the scene in camera’s coordinate system. Each channel can
be used to create a grayscale image of the scene.

Robotic manipulator: A four DOF robotic manipulator (Model:
MICO2, KINOVA Inc., Boisbriand, Quebec, Canada) was used for this
system (Fig. 1).

A robotic gripper was designed and printed using a 3D printer to
integrate a bifurcated optical fiber cable (for leaf VisNIR reflectance
measurement) and a thermistor (for leaf temperature measurement).
The gripper was printed from black plastic material to reduce the
weight and minimize light scattering (Fig. 2). The bifurcated optical
fiber cable was attached to the gripper using an adjusting set screw. A
small piece of neoprene rubber with low heat conductivity was attached
to the gripper in order to reduce heat transfer (between the gripper and
the leaves) for temperature measurement. The gripper was then at-
tached to the end effector of the KINOVA robotic manipulator.

Sensors: The optical assembly that enabled measurement of leaf
VisNIR reflectance via the bifurcated optical fiber cable (RP25,
Thorlabs Inc., Newton, NJ, USA) consisted of (1) a stabilized tungsten-
halogen light source (Model: SLS201, THORLABS Inc., Newton, NJ,
USA) and (2) a portable spectrometer (Model: Flame, OceanOptics Inc.,
Dunedin, FL, USA). The output of the light source had a spectral range
from 300 to 2600 nm, and the spectral range of the portable spectro-
meter was 350–1000 nm. The thermistor for leaf temperature

measurement (Model: ST 200: Fine-Wire Thermistor, Apogee
Instruments Inc., Logan, UT, USA) had a measurement accuracy of
0.2 °C between 0 and 70 °C and a response time of less than 1 s.

A data logger (Model: LabJack U6, LabJack Corporation, Lakewood,
CO, USA) was used to record data from the temperature sensor. A
laptop with Intel Core i7 Processor (2.5 GHz) and 8 GB RAM was used
to control the robotic system, and measure and store the data.

Integration of hardware for the phenotyping robotic system: The
robotic system was mounted on the top of a height adjustable desk. This
allowed the robotic system to adjust its height according to the height
of plants if needed. The TOF camera was placed near to the robotic
manipulator. The bifurcated optical fiber and the temperature sensor
were integrated with the robotic manipulator by attaching them to the
gripper (Fig. 3). Other system components including the portable
spectrometer, the light source, and the data logger were also placed on
the desk (Fig. 3).

2.2. Software of the robotic system

Image processing for plant segmentation, leaf identification, and
grasping point localization: After taking the image using the TOF
camera, the Z channel of the scene (plant) was extracted as a grayscale
image (Fig. 4a). A threshold based on the distance between the camera
and the plant in Z direction was determined to segment the plant from
the background, and to create a binary image (Fig. 4b).

The even columns of pixels were removed from the binary image.
The remaining odd columns appeared as vertical lines in the image as
shown in Fig. 4c. All vertical lines were labeled. For each vertical line,

Fig. 1. The four degree of freedom robotic manipulator used in this study and
its kinematic parameters.

Fig. 2. The gripper and its integration onto the robotic manipulator.
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the coordinates of its center point and its length were determined. Then
the length of each line was plotted against its label (Fig. 4d). Since the
edges of the stem had the largest length and caused abrupt changes in
the plot, the two abrupt changes and their indices were determined. The
indices were used to find the center point of the edges of the stem. The
stem was detected using the coordinates of the edges (Fig. 4e).

The center point of a leaf was chosen to avoid hitting the stem by
the robotic manipulator, and also to grasp the leaf properly. After de-
tecting the stem in the image, the stem was removed and the remaining
leaves were labeled. The center point of each leaf along with its 3D
coordinates in the camera coordinate system was determined in the
binary image as a potential grasping point. A flowchart describing the
process of finding the grasping point of the leaves is presented in Fig. 5.

The leaves were ranked to select the best three leaves for

measurement (Fig. 6). Two criteria were considered to rank the leaves.
Firstly, a leaf having a larger major axis length was given higher rank
because it had greater chance to be grasped by the gripper. Secondly, a
leaf which had shorter distance to the origin of the robotic manip-
ulator’s coordinate system was ranked higher in order to reduce the
total execution time for the measurement.

The angle of the ranked leaves relative to the horizontal line were
determined, which in turn was used to calculate the angle of the last
joint of the robotic manipulator (the fourth joint) to have an appro-
priate angle for leaf grasping (Fig. 6).

The ‘regionprops’ function in MATLAB returns the sets of properties
of connected objects in a binary image. The ‘MajorAxisLength’ and
‘Orientation’ properties in ‘regionprops’ function were used to calculate
the length of major axis of each ranked leaf (in pixels) and to compute
the angle of the ranked leaves relative to the horizontal line (in de-
grees).

3D plant point cloud: To visualize a 3D model of the plant, the 3D
point clouds of plant was generated by creating a 3D plot of the plant
pixels XYZ coordinates which were provided by the TOF camera.

2.3. Inverse kinematics of the robotic manipulator

The translation from the robotic manipulator’s coordinate system to
the camera’s coordinate system was 10.5 cm, −4 cm, and 41.2 cm in X,
Y, and Z directions (Fig. 7).

A transformation matrix was determined based on the rotation and
the translation of the camera’s coordinate system relative to the robotic
manipulator’s coordinate system (Eq. (1)).
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RP is the 3D coordinates of the center point of the leaf relative to the
robotic manipulator’s coordinate system; TCR is the transformation
matrix between the camera’s coordinate system and the robotic ma-
nipulator’s coordinate system; CP is the 3D coordinates of the center
point of the leaf relative to the camera’s coordinate system. Px , Py, and Pz
are the translation from the robotic manipulator’s coordinate system to
the camera’s coordinate system in X, Y, and Z directions. The trans-
formation matrix was used to convert the 3D coordinates of the leaf’s
center point from the camera’s coordinate system to the robotic ma-
nipulator’s coordinate system (Eqs. (2)–(4)).

= +X X PR C x (2)

= − +Y Z PR C y (3)

= +Z Y PR C z (4)

Where:
XC , YC, and ZC are the x, y, and z coordinates of the center point of

the leaf relative to the camera’s coordinate system. XR, YR, and ZR are
the x, y, and z coordinates of the center point of the leaf relative to the
robotic manipulator’s coordinate system.

The geometric approach was applied to calculate the joint angles of
the robotic manipulator. Two different paths were found based on the
inverse kinematics solutions. The path that gave a lower probability of
hitting leaves by the robotic manipulator during grasping was chosen.

All equations for the inverse kinematics of the robotic manipulator
were then derived for the chosen path. The angles of Joints 1 through 4
were calculated using Eqs. (5), (7), (6), and (8), respectively.

=θ atan X Y2( , )R R1 (5)

Fig. 3. The robotic system and its components.

Fig. 4. (a) Grayscale image of the plant, (b) Binary image after segmentation,
(c) Binary image after removing the even columns of pixels, (d) Major axis
length versus the index of the vertical lines, and (e) Detected edges of the stem.
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= +θ The angle of the leaf( ) 904 (8)

Where:

Fig. 5. Flowchart for finding the grasping point on the leaves.

Fig. 6. Illustration of three best candidate leaves ranked and their angles re-
lative to the horizontal line.

Fig. 7. Position of the coordinate system of the TOF camera (XCYCZC) and that
of the robotic manipulator (XRYRZR).
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The robotic manipulator grasped the ranked leaves in two steps.
First, it moved toward the leaf and then stopped at a distance ∼5 cm in
front of the leaf. Second, it moved horizontally to grasp the leaf. After
measuring the leaf reflectance and leaf temperature, the robotic ma-
nipulator followed the same path back to the initial position.

A Graphic User Interface (GUI) was developed in MATLAB (version
2017, MathWorks, Natick, MA) to control the portable spectrometer
and the thermistor and measure leaf reflectance and temperature. The
GUI displayed and stored 3D point clouds of the plants (from the TOF
camera), the VisNIR reflectance of the leaves, and leaf temperature
readings (Fig. 8). The GUI also integrated the image processing algo-
rithm and inverse kinematics calculation as described above. It stored
the times for image processing, inverse kinematics calculation, leaf
approaching and grasping, sensing process, and the total execution time
(which was the time that the robotic system accomplished the entire
task).

2.4. Testing and data analysis

To test the function and performance of the phenotyping robot, an
experiment was conducted in the Greenhouse Innovation Center of the
University of Nebraska-Lincoln. This greenhouse was equipped with a
high-throughput plant phenotyping system (Scannalyzer3D, LemnaTec
GmbH, Aachen, Germany). During test, the robotic system was em-
placed alongside the system’s conveyor belt. Plants were loaded onto
the conveyor belt and transported to the system for robotic pheno-
typing. The distance between the camera and the plants was 20–30 cm.

Sixty maize (B73) and sixty sorghum plants (TX430) were grown in
the pots and used to evaluate the robotic system. The experiment in-
cluded two levels of water treatment (well-water versus water-limita-
tion) and two levels of applied nutrients (high versus low). Each plant
was randomly assigned to one of the four treatment combinations, and
the goal was to create a large variation in plant leaf properties (re-
flectance spectra and temperature) to validate automated robotic
measurements. The well-water treatment was achieved by watering
pots to 80% of field capacity on a daily basis, while the water-limitation
treatment 40% of field capacity. The high-nutrient treatment was
achieved by adding 0.122 kg of Osmocote Plus fertilizer (15-9-12 (N-P-

K) with micronutrients, 3–4months nutrient release) into pot mix
(5.67 L) at the time of planting. For low nutrient level, fertilizer liquid
with 100 ppm concentration of 20-10-20 (N-P-K) fertilizer with mi-
cronutrients were added.

Data collection started when the plants were at nine leaf stage and
lasted until the plants were at 13 leaf stage. The experiment was done in
six weeks. Five days were chosen in each week for data collection; and
in each day, data were collected from four plants with different com-
bination of water and nutrient treatments.

Immediately after robotic phenotyping, ground-truth measurements
(manual measurements by a researcher) were taken to compare with
automated robotic measurements (automated measurements). A spec-
troradiometer (Model: FieldSpec4, Analytical Spectral Devices Inc.,
Longmont, CO, USA), a thermistor (Model: ST 200: Fine-Wire
Thermistor, Apogee Instruments Inc., Logan, UT, USA), and a handheld
chlorophyll meter (Model: MC-100 Chlorophyll Concentration Meter,
Apogee Instruments Inc., Logan, UT, USA) were used to measure leaf
reflectance, leaf temperature, and leaf chlorophyll content at the
grasping points (Fig. 9). For each plant, up to three ground-truth and
automated robotic measurements (from three grasping points identified
by the robots) were made. They were averaged to represent the mea-
surements for that plant.

After the automated and ground-truth measurement, the plant was
harvested and the fresh weight of aboveground biomass was recorded.
After drying the plant for 72 h at 50 °C to constant weight, leaf water
content (on a fresh biomass basis) was calculated. The dried leaves of
the plants were sent to a commercial lab (Midwest Laboratories,
Omaha, NE, USA) and leaf Nitrogen (N), Phosphorus (P), and Potassium
(K) concentrations were measured.

For the VisNIR spectra from the OceanOptics spectrometer (robotic
measurements), a range from 450 to 950 nm was used (to avoid high
noise regions at the two ends of spectra) for modeling and predicting
leaf chemical properties. Spectra were smoothed with a moving average
window (of size 30) to further reduce the noise of spectra. Similarly,
spectra from the ASD spectrometer were also truncated between 450
and 950 nm for modeling and prediction. Partial least squares regres-
sion (PLSR) models of different leaf properties were calibrated using the
spectra with six random segment cross-validation (60% for cross-vali-
dation and 40% for validation). Data analysis was performed in R

Fig. 8. The Graphic User Interface (GUI) developed in MATLAB to control the plant phenotyping robot and display the robotic measurements.
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Statistical Software (R Core Team, 2018) with the following packages:
pls (Mevik et al., 2016), caret (Kuhn et al., 2017), and zoo (Zeileis and
Grothendieck, 2005).

Two different success rates were defined and calculated for the ro-
botic system in order to assess its performance to grasp leaves and
collect data in the greenhouse.

(1) The integration success rate: It was defined as grasping at least one
leaf per plant and recording the measurements successfully before
releasing the plants from the robotic station.

(2) The grasping success rate: It was defined as the ratio between the
number of the leaves which were successfully grasped and the total
number of the leaves identified as the candidate grasping leaves.

3. Results and discussion

3.1. The performance of the robotic system

Table 1 gives summary statistics of the execution time for image
processing, inverse kinematics, leaf grasping, sensing process, and total
execution time to measure one leaf for maize and sorghum plants. Leaf
grasping, which involved bringing the robotic gripper and sensors into
contact with the leaves, took the longest time to execute. Image pro-
cessing was computationally more intensive than inverse kinematics
and thus took longer to execute.

The execution times for different steps and total execution time
were comparable for maize and sorghum plants, and it was approxi-
mately 37 s to take one robotized measurement. This was significantly

longer than human based measurement, which only took 5–6 s in our
case.

The image processing to segment the leaves from the stem worked
well for maize plants. However, the specific variety of sorghum we
chose to work with (TX430) exhibited more vertically distributed leaves
than maize. This sorghum morphology made it more challenging to
remove stem pixels while retaining leaf pixels for leaf identification and
grasping point localization (Figs. 4 and 5). For this reason, the in-
tegration success rate was only 48% for sorghum plants, much lower
than 78% for maize plants.

The grasping success rate for maize plants was 50% and that for
sorghum plants was similar (∼50%). The experiment also showed that
the phenotyping robot could grasp on average two leaves per plant and
collect data successfully. It failed to grasp a leaf for three main reasons.
First, if the 3D coordinates of the grasping point were out of the
workspace of the robotic manipulator, the robotic manipulator was not
driven to grasp the leaf. Second, since the camera had uncertainty to
measure the z coordinate of the scene (± 2 cm), it could cause an error
in the calculation of the joint angles of the robotic manipulator and only
grasped the target leaf partially at the edge of the leaf. Third, if the leaf
was vertical (i.e. approximately 90° angle from the horizontal plane),
the manipulator could not grasp the leaf due to the lack of needed
dexterity and degree of freedom.

Fig. 10 compares the leaf temperature of maize and sorghum plants
measured by the human operator (ground-truth) with that measured by
the phenotyping robot. It can be seen that two sets were significantly
linearly correlated (R2= 0.58 for maize plants, R2= 0.63 for sorghum,
and R2= 0.62 for maize and sorghum plants together). However, there
was also significant bias between them. Robotized temperature mea-
surement was 0.71 °C lower than the manual measurement in maize,
0.81 °C lower in sorghum, and 0.76 °C in both species together. Three
factors could be attributed to the bias between the two temperature
measurements. Firstly, when the human operator took the temperature
measurement, she always ensured good contacts between the leaf and
the sensor. This was quite challenging for our phenotyping robot, which

Fig. 9. Ground-truth measurements by a researcher: leaf reflectance spectrum (left), leaf temperature (middle), and leaf chlorophyll content (right).

Table 1
Summary statistics for the execution time of different steps in automated ro-
botic measurement of one leaf.

Time (s) Statistic Maize plant Sorghum plant

Image processing Maximum 3.86 4.30
Minimum 2.32 1.89
Average 3.05 2.64
Standard deviation 0.412 0.470

Inverse kinematics Maximum 0.049 0.060
Minimum 0.016 0.013
Average 0.026 0.026
Standard deviation 0.009 0.009

Leaf grasping Maximum 45.5 45.1
Minimum 22.5 22.2
Average 31.5 33.6
Standard deviation 5.17 5.79

Sensing process Maximum 2.44 1.75
Minimum 0.845 0.858
Average 1.19 1.24
Standard deviation 0.356 0.344

Total execution Maximum 47.2 52.9
Minimum 30.3 29.2
Average 35.5 38.5
Standard deviation 4.39 5.68

Fig. 10. Scatterplot of leaf temperature measured by the human operator versus
the phenotyping robot for maize and sorghum plants. The linear regression and
the statistics were reported for maize, sorghum, and the two species together.

A. Atefi, et al.



lacked the needed dexterity, degree of freedom, and the sense of
pressure to orient its manipulator and gripper nicely with the leaf
surface to have a good contact. This could explain the negative bias of
the robotized measurements. The second factor could be due to the fast
change of leaf temperature relative to ambient temperature. There were
large temperature differences between the greenhouse (where the
plants were grown) and the head house (where the measurements were
taken). Leaf temperature was likely not in a steady state during mea-
surement. There was a slight time difference between the manual and
robotic measurement, which would lead to small bias between the two
sets of temperature measurements. Thirdly, the two temperature sen-
sors used by the human operator and the phenotyping robot were not
cross calibrated. They could indicate a temperature different as large as
0.5 °C even when they were to measure the same object; and the sensor
used by the human operator were known to indicate slightly higher
temperature.

We further conducted a Welsh’s two-sample t-test to compare leaf
temperature of the plants under the two water treatments. The rationale
for this comparison was that the plants under the water limitation
treatment should exhibit higher leaf temperature due to the drought
effect of reduced leaf-level transpiration (Fig. 11). The results showed
that, for maize plants, leaf temperature was significantly higher (p-
value=0.018) when measured manually by the human operator.
However, such difference was not significant (p-value= 0.111) for the
automated robotic measurements, even though the mean temperature
for the water limitation group was slightly higher. For sorghum, neither
manual measurements nor robotic measurements exhibited significant
difference between the two water treatment groups (p-values= 0.245
and 0.068, respectively). Sorghum is more drought tolerant than maize,
which could explain the non-significant leaf temperature difference.
Although there is still improvement to make robotized leaf temperature
measurements more accurate, this comparison suggested one potential
use of our phenotyping robot to distinguish drought-tolerant lines from
drought-sensitive lines.

3.2. Chemometric prediction of leaf chemical properties from leaf
reflectance data

Table 2 gives results of PLSR modeling of leaf chemical properties
using leaf reflectance spectra measured by the phenotyping robot in
comparison to manual measurements. Among the five leaf properties
studied, leaf chlorophyll content was predicted most successfully, fol-
lowed by fresh-based water content and K. Prediction of N and P ex-
hibited poorer performance. Fig. 12 shows the scatterplots of predicted
versus measured leaf properties in maize and sorghum for both manual
and robotic measurements.

The predictions with spectra data from the ASD spectrometer were
substantially better than with those from the OceanOptics spectro-
meter. Note that ASD spectra were acquired with a human operator,
whereas OceanOptics spectra were acquire automatically with the

phenotyping robot. During spectral data collection, the human operator
always ensured that the leaf clip was in close contact with the leaf. In
many occasions, she was using the other hand to guide the orientation
of the leaf blade such that no light was leaked out of the measurement
point. This kind of manipulation was very difficult to achieve with our
phenotyping robot, again due to the lack of needed dexterity and the
sense of pressure to ensure good contacts between the gripper and the
leaf. This resulted light leakage and thus lower spectral quality in leaf
reflectance measurement.

3.3. Potential improvements and future directions

We developed and demonstrated a robotic system that can realize in
vivo, human-like measurements of plant leaf traits in the greenhouse.
This approach was different from the traditional image-based pheno-
typing, where plant images were used as a nondestructive means to
acquire predominantly morphological traits such as height, width and
projected leaf area (Neilson et al., 2015; Ge et al., 2016). Even though
some imaging modules such as NIR and hyperspectral imaging can
probe leaf biochemical traits (Pandey et al., 2017), they still need
manual measurements to establish correlations with image data. In this
sense, the phenotyping robot would be useful to complement image-
based phenotyping by obtaining physiological or chemical measure-
ments directly at the plant leaf level.

We integrated to the robotic gripper a fiber optical cable to measure
leaf-level reflectance and a thermistor to measure leaf temperature.
With some mechanical modifications, sensors to measure other leaf
properties (such as stomatal conductance, gas exchange, chlorophyll
content, etc.) can be integrated. It is also possible to integrate a me-
chanical sampler to cut and collect leaf disks with the robotic gripper.
While the measurement speed of the phenotyping robot is slower than
that of a human operator, many of these robots (equipped with different
plant sensors) can be launched in the greenhouse, which would sub-
stantially enhance the speed and capacity of the phenotyping robot.
Furthermore, many modern greenhouses already have conveyor sys-
tems to move the plants around, which would make the integration of
the phenotyping robots with the existing greenhouse infrastructure
straightforward.

The phenotyping robot realized its designed functions of automated
leaf probing and leaf-level trait measurement. Its performance, never-
theless, could be further improved. Firstly, a robotic manipulator with
more DOF would make the robot more dexterous and flexible to probe
the leaves. This measure would ensure good contact between the
gripper/sensors and plant leaves, which is critical to improve the
quality of sensor measurements. Secondly, a collision free path plan-
ning algorithm would be designed and implemented. This technique
finds the optimal path for the robotic manipulator’s movements be-
tween two grasping points without hitting the leaves or stem and po-
tentially reduces execution time. Thirdly, the TOF camera we used is
low in spatial resolution and introduces large uncertainties in

Fig. 11. The box plots of average manual vs. automated leaf temperatures for maize and sorghum plants with two water treatments.
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determining the XYZ coordinates of grasp points. Using a stereovision
camera with higher accuracy can improve grasp point localization, and
therefore improve the overall success rate of leaf probing and robotic
measurements. Finally, the test plants were all placed with their sym-
metrical plane facing the TOF camera. In this position, leaf occlusion

was minimized which was instrumental to subsequent image processing
and robotic measurements. In real applications, plants would be ran-
domly oriented and presented to the imaging system, therefore causing
a number of problems regarding leaf segmentation and robotic mea-
surements. These challenges need to be sufficiently tested and

Table 2
Results of partial least squares modeling to predict leaf chemical properties using leaf reflectance spectra measured by the phenotyping robot in comparison to
manual measurements.

Property Manual Robotic

Cross-validation Validation Cross-validation Validation

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

CHL (μmol/m2) 0.907 57.9 0 0.865 69.0 −11.0 0.664 119 0 0.525 112 −1.12
FBWC (%) 0.891 1.97 0 0.861 2.25 0.517 0.637 3.46 0 0.614 3.75 1.12
N (%) 0.602 0.271 0 0.384 0.333 −0.078 0.421 0.331 0 0.139 0.374 −0.036
P (%) 0.567 0.112 0 0.565 0.114 −0.003 0.406 0.139 0 0.112 0.230 −0.063
K (%) 0.870 0.500 0 0.788 0.667 −0.027 0.693 0.835 0 0.519 1.00 0.020

CHL=Chlorophyll content, FBWC=Fresh-based water content, N=Nitrogen, P= Phosphorus, K= Potassium, RMSE=Root mean squared error.

Fig. 12. Scatterplots of lab-measured versus predicted leaf properties of maize and sorghum plants for manual measurement (left column) and robotic measurement
(right column).
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addressed for real life applications.

4. Conclusions

In this paper, we designed and developed a plant phenotyping ro-
botic system to realize in vivo, human-like leaf trait measurement. The
system comprised of a 3D TOF camera, a four DOF robotic manipulator,
and a custom-made gripper that integrated a bifurcated fiber optic cable
and a thermistor. This robotic system was tested in the greenhouse
using maize and sorghum plants. The test result showed moderate ac-
curacy for measuring several leaf traits including temperature, chlor-
ophyll content, fresh-based water content, and potassium (R2 ranged
from 0.52 to 0.62) by the phenotyping robot in comparison to the
ground-truth measurement. The leaf grasping success rate was ∼50%
for both maize and sorghum, and the average execution time to take
measurements from one leaf was 35.5 s for maize and 38.5 s for sor-
ghum. This phenotyping robot has the great potential to complement
image-based high-throughput plant phenotyping by measuring leaf
physiological and chemical traits directly and automatically.
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